
Symbian C++ Application Programming Overview

F. Pérez, C. Carrión, E. Montón, V. Traver
ITACA Institute, Polytechnic University of Valencia (Spain)

fraperod@itaca.upv.es

Abstract

This paper offers an introduction to the

development of applications for mobile devices, and in
particular for the development of applications created
using Symbian C++.

Mobile development is limited by the nature of
mobile devices and wireless technologies. Due to this
special environment conditions, the choose of an
Operating System prepared for handle specific issues
related with resource constrained devices is a key
factor to successfully overcome the limitations of the
mobile development world.

Symbian Operating System (OS) is described and
compared with other well-kwon mobile operating
systems. Furthermore, the main issues related with
Symbian C++ programming are exposed, and the
security of Symbian devices are discussed.

1. Introduction

There are many limitations imposed on the mobile
application development by the mobile devices and the
wireless networks. Most of these are obvious, such as
narrow bandwidth, heterogeneous networks, and
limited resources on the devices.

The applications running on the mobile devices
need to be prepared for more or less frequent
disconnections. The battery might run out, the user
might be moving out of the coverage area of the
network, or some external network failure might occur.
This means that compared to applications running on
workstations connected to a wired network, mobile
applications need to take more control over how to
handle network failures; they cannot just assume that
these are rare and that the user can react to them
immediately whenever they occur.

Distributed applications for mobile devices almost
always have to make many kinds of implementation
compromises. It is not a good idea to make the mobile
client applications complex and resource consuming,
but it is not a good idea to exchange a lot of data

across an insecure and slow network either.
Furthermore, the solution that seems to result in a good
balance in one type of device might be totally
inadequate in another.

The limitations are not always just hardware-
related; the software environment brings in restrictions
as well. For example, the PC world has support for
many different programming languages, each better
than the other for solving certain kinds of
programming challenges. Support for only a fraction of
these has yet been made available on mobile devices.
Symbian[1] devices currently have built-in support for
native C++, Java, and Python programming languages
and through a third-party solution from AppForge for
.Net Visual Basic and Visual C#[1].

Symbian is an advanced, multitask, open, and
flexible operating system built up specifically for
mobile phones. The objective of Symbian is to drive
standards for the interoperation of data-enabled mobile
phones with mobile networks, content applications and
services.

Symbian is an operating system open for third-party
development, which implies that the programming
APIs needed for the development of applications are
available for free. as well as standard languages such
as C++ and Java, SDKs, tools, documentation, books,
technical support and training. Symbian OS has a rich
set of APIs for independent software developers,
partners and licensees to write their applications.

In this paper a first approach to programming
Symbian Devices using C++ is provided.

2. Symbian OS Architecture

Symbian has been designed taking special care
regarding resource management, scalability and
interface customization for specific mobile phones. All
Symbian devices share common system core
components and also most of programming APIs,
which represent approximately the 80% of the system.
The difference in APIs appears mainly in User
Interface (UI) which can be defined by each vendor

and represents the remaining 20% of system APIs.
Figure 1 shows Symbian’s structure.

Therefore, main effort when porting from one
device type to another resides in the adaptation of the
UI part of the application. The most extended interface
types among Symbian devices are Nokia Series 60[3]
which is based on one-handed keyboard input, and
Sony-Ericsson UIQ interface[4] which is based on the
use of a tactile screen, integrating fully-featured
personal digital assistant (PDA) capabilities with
traditional mobile phone single unit.

Kernel

Symbian System Layer

Symbian Application Engines

UI Design

5%

20%

55%

Licensee / Symbian

System Platform
(Generic

Technology)

20%

Figure 1 – Symbian Structure

Symbian Multimedia Framework (MMF) allows

developers to write efficient and powerful plug-ins.
Codec API is provided and MMF supports codec plug-
ins, with separate format and controller plug-ins.
Format plug-in decodes or encodes a specific data
format (e.g., MP3) and controller handles, e.g., a
specific file format (say WAV) and creates the
necessary source and sink objects and their
connections.

There is a large networking and communication
subsystem, which has three main servers - ETEL
(EPOC telephony), ESOCK (EPOC sockets) and C32
(responsible for serial communication). Each of these
has a plug-in scheme. For example ESOCK allows
different ".PRT" protocol modules, implementing
different types of networking protocol scheme. There
is also a wide support related to short-range
communication links too, such as Bluetooth, IrDA and
USB.

Java Virtual Machine: is built in as part of Symbian
System offering: robustness, functionality and platform
integration and performance, both in terms of speed
and memory footprint. Symbian, in both its Java
implementation and its core operating system, has
done an optimal use of constrained memory resources.
The Java implementation is highly optimized at all
points in the chain. This includes graphics, libraries,
and of course the VM.

2.1. Multi-Tasking

In smartphones, multitasking is especially valuable
since users will frequently want to do things such as
downloading e-mail while talking or looking at a Web
site. As 2.5G and 3G network packet data services
become more common, multitasking smartphone
applications will become a must.

Symbian OS is an event-handling system extremely
efficient in power consumption. The events are
managed through the active objects, which encapsulate
the association between making a request, and
handling its completion: each active object is
responsible for making and handling just one
outstanding request. They provide non-preemptive
multi-tasking, which makes multi-threaded
programming unnecessary for most applications and
servers.

In addition, since the programmer uses active
objects within the Symbian OS itself for system
service access, it's relatively simple to access system
resources such as the file server, messaging server, and
sockets server with a straightforward API call.

2.2. User Interface

Symbian OS offers different kinds of user
interfaces(UI). Even though the user interfaces
themselves are maintained by other parties, the base
classes and substructure ("UIKON") for all UIs are
present in Symbian OS, along with certain related
servers (for example, a view server which controls
transitions between different phone user interface
screens). There's a lot of related graphics code too,
such as a window server and a font and bitmap server.

Figure 2 - User Interface Architecture

Figure 2 shows the Architectural relationships in

Symbian OS regarding user interface. The two key
components are Uikon, a generic core UI framework,

which is present on all Symbian OS phones, and a
Product UI, UI libraries developed by a Symbian OS
licensee for a particular phone or range of phones.

An extra element of UI specialization for licensees
is provided by the Product Look And Feel (LAF)
library. This sets the appearance, such as colour and
size, of Uikon controls.

These components are layered above the UI Control
Framework, which defines the abstract concepts of the
user interface at a basic level, and the Application
Architecture, which defines an abstract framework for
applications.

Together, these components provide to applications:
a programming framework that provides services
required by all applications, such as initializing the
application at start-up, channeling user input to the
correct part of the application code, and interacting
with the shell and file system controls and dialogs for
applications to use. Development Kits produced by
licensees supply an appropriate real Product UI.

2.3. Communication Architecture

In the last few years we can observe a rapid and
continuous evolution of mobile communication
systems. The applicable technologies are, for example,
3G UMTS, GPRS, IrDA or Bluetooth. Although they
are totally different transport techniques, at the
application layer they all can be handled with sockets.
After initializing the current communication
technology, there is a socket on the server and client
side that is needed to be connected. There are different
discovery services depending on the technology
currently used to select the remote device before
establishing the connection. On each side of the
communication, there is a socket to read and
Moreover, Symbian includes support for multi-homing
– the ability to be connected to two connections at the
same time (e.g. WiFi and EDGE) – so you may be
browsing using EDGE but downloading email at the
same time on WiFi, for example.

3. Comparisons with Other Systems

Symbian’s approach to resource management is a
key part in fulfilling the requirements of handheld
devices. This can be seen when comparing Symbian
with other well-known systems.

3.1. Windows CE

From a programming perspective, Windows CE’s
greatest attraction is that it uses an extended subset of
the Win32 APIs found in desktop versions of

Windows. Experienced desktop Windows
programmers can port their code (if it is written at a
fairly basic Win32 level) to Windows CE without
much adaptation.

But this attraction is also Windows CE’s greatest
weakness. The Win32 APIs were not designed to
handle errors on every resource allocation, or to clean
up properly. Nothing is done to reinforce good habits
in Win32 programmers, especially in the desktop
environment, which has become more and more
forgiving. Programmers don’t always check return
codes, and don’t always handle them well.

Because Windows CE is marketed to developers on
the basic assumption that programmer don’t have to
change much in its existing Win32 code, there’s no
option to implement memory management that would
alter every function call in existing source code.
Instead, Windows CE’s designers implemented a
retrospective monitor/sweeper system. The CE system
monitors available memory and, when it is running
low, sweeps through all applications, asking them to
release memory. This works with only loose
cooperation between the system and applications. Put
in another way, imposes only minimal requirements for
change on existing Win32 programs.

When Windows CE’s monitor detects that only a
small amount of memory is still free, or when an
allocation is about to fail due to an out-of-memory
condition, the system sends a WM_HIBERNATE
message to all applications. Each application must then
try to free up some memory. The user may also be
asked to close some applications. Ideally, this works
fine, and the system continues on its way.

But if the applications don’t free memory, or the
user doesn’t close some applications, the system takes
more radical action: it may kill applications, with data
loss. Applications are killed in reverse Z order – that
is, the application that’s furthest in the background is
killed first. This can be easily verified this by
experimentation with a Windows CE device, and the
only really safe way to deal with it is to save all
application data when an application losses focus.

Windows CE’s memory management is not tailored
to the requirements of small systems, nor is it in any
sense industrial strength. It is possible to write
individual industrial-strength applications, libraries or
servers for Windows CE, but the system provides little
support for doing so, and in practice few applications
take the necessary precautions[5]

3.2. Palm OS

Like Symbian, Palm OS was designed from the
outset for small, memory-constrained environments.

The APIs and system design convey this clearly, and
every Palm programmer knows this from the outset.

Palm OS maintains a very small memory footprint
by simple application design, and by closing
applications when there are not in foreground. When
an application is closed, it is required to save data.
Most application data is stored in the Palm database
manager, which handles saving as a routine part of the
application.

Although Palm OS doesn’t provide special cleanup
support, cleanup comes at regular intervals anyway,
because applications are so frequently closed. The
Palm system design is very well suited to its task,
though it would be difficult to scale this approach to a
larger environment; for example, to support
multitasking without closing down background
applications, or to support a large number of active
servers.

Windows CE can be compared quite usefully with
Palm OS. Palm applications in the background are
effectively in deep hibernation. Windows CE’s
shallow hibernation doesn’t protect background
applications from getting killed, so when Windows CE
applications go into the background they have to save
data – like Palm applications, in order to be truly safe.
Palm OS’s system design has the advantage of being
fit for its intended purpose, but it’s hard to scale up.
Windows CE can clearly be scaled up (as it can be
expected of a system that was initially scaled down!),
but can only be made fit for its intended purpose by
applications taking Palm-like precautions.[5]

3.3. Linux

Linux is starting to take part of the mobile market,
specially focused for new emerging Asian markets
(mainly China).

Linux main advantage is its low cost, being royalty-
free, seems a proper option for manufacturer facing
new feature rich mobile devices. Availability of the
full source code allows manufacturers to develop
customized-looking terminals.

The main Linux’s drawback is that it has been
designed for PC/servers, not for mobile devices with
reduced memory, processor, and battery resources.

Linux is generally regarded as a more complicated
and sophisticated operating system compared with the
more intuitive "user friendly" operating systems such
as PalmOS and Microsoft's PocketPC. Therefore
adaptation of user interface has also to be done by
vendors.

Another Linux inconvenient is that no single
company supports mobile Linux, so there is no
singular, uniform standard for hardware/software

developers. This situation may lead to application
compatibility problems among different manufacturers
of Linux devices.

In order to solve these problems some
standardization organization has been founded:

OSDL: Mobile Linux Initiative works in the
standardization related to Linux lower layers.

The Linux Phone Standards Forum (LiPS) works
in the definition of common interfaces for application’s
services and its behavioural (or non-functional)
requirements for those services, in order to allow the
development of compatible applications for different
Linux devices.

On the other hand, some companies are selling
Linux based solutions for mobile devices’ software.
The most representative companies offering Linux
based solutions are Montavista Linux, Trolltech,
PalmSource and WindRiver.

As example of available Linux devices, highlight
that Motorola has started manufacturing mobile phones
based on a Linux/Java software platform (which are
being distributed in China). The platform released
combines MontaVista's Linux OS, Trolltech's
Qt/Embedded (now known as Qtopia Core) GUI
platform, and Motorola’s own proprietary phone stack.
Third-party applications in Motorola’s Linux devices
are only allowed in Java.

3.4. Java

The Java Platform, Micro Edition (J2ME) provides
a robust, flexible environment for applications running
on consumer devices, such as mobile phones, PDAs,
TV set-top boxes, printers and a broad range of other
embedded devices.[11]

Configurations are composed of a virtual machine
and a minimal set of class libraries. They provide the
base functionality for a particular range of devices that
share similar characteristics, such as network
connectivity and memory footprint. Currently, there
are two J2ME configurations: the Connected Limited
Device Configuration (CLDC), and the Connected
Device Configuration (CDC).

The J2ME platform can be further extended by
combining various optional packages with CLDC,
CDC, and their corresponding profiles. Created to
address very specific market requirements, optional
packages offer standard APIs for using both existing
and emerging technologies such as Bluetooth, Web
services, wireless messaging, multimedia, and database
connectivity. Because optional packages are modular,
device manufacturers can include them as needed to
fully leverage the features of each device.

The main drawbacks of using Java in mobile
applications are the execution speed of the java
applications, due to it is a semi-interpreted language,
run-time RAM utilization because the Java Virtual
Machine has to be loaded also in order to run a Java
application and also some limitations dealing with
access to device’s hardware resources.

4. Symbian C++

Symbian native programming using C++ does not
uses Standard C++. By the time that Symbian system
was being defined (1997) C++ Standard was still not
available.

Symbian C++ has not supported Standard C++
Exceptions until Symbian version 9. Instead a Trap
and leave mechanism is used.

Symbian C++ does not support multiple inheritance
in general, only allowed with pure abstract classes
(interfaces), which are named usually starting by a
“M”.

Standard Template Library (STL) from C++ has not
been supported in Symbian until version 9. This
support has being introduced to easy porting of
existing code, but its use is discouraged.

Symbian C++ is a strongly Object Oriented
language which also defines its own Class Naming and
coding style. It is strong focused on correct resource
allocation and error condition handling while
application execution. Possible Memory allocation
errors are taken into account in each single function
call.

The Cleanup Stack is a mechanism used for
releasing dynamically allocated resources in case an
error may happen while executing a function. Each
faction which may leave (exit because of a memory
allocation error) is named placing an “L” suffix (i.e.
FunctionL).

Figure 3 – Main Symbian APIs Classification

4.1. Memory

Symbian OS uses a strict managing memory
system. Memory, as a limited resource is carefully
handled, particularly in the event of error conditions.
For this reason, exception handling and memory
management are closely tied together in the Cleanup
Support API. This API has three key concepts:
exception handling, cleanup stack, and general cleanup
item.

4.2. Coding Idioms

Symbian OS defines its own class types instead of
using standard C++ or STL classes. Symbian OS uses
a simple naming convention which prefixes the class
name with a letter (T, C, R or M). The categories are
used to describe the main properties and behavior of
objects of each class.
T classes: Classes that do not own dynamically
allocated resources. Behave much like the C++ built-in
types.
C classes: Symbian OS requires that all classes that
own dynamically allocated resources derive from a
standard base class: CBase. Such classes by
convention have a C prefix to their name, and so are
referred to as C classes. C classes, and their associated
allocation and cleanup idioms, are fundamental to
Symbian OS.
R classes: Resource types. The ”R” which prefixes an
R class indicates a resource, which is used but nowt
owned by the application.
M classes: M class is an abstract interface class. The
only allowed multiple inheritance in Symbian C++ is
through M classes.

5. Symbian Application Architecture

The GUI applications developed for Symbian
mobiles usually use the Model-View-Controller
pattern, which can be seen as differenced layers with
well-defined interfaces.

Figure 4 – Model View Controller Design Pattern

Figure 4 shows the structure of the model-view-
controller pattern. The model class is in charge of
storing and managing the application data, it contains
the logic of the application, and also handles the
communications and file-based data storing. The view
class function is to format and show the data contained
in the model to the user. And finally the controller
class’ functions deal with user interaction events
handling.

This design of applications makes easy-to-change
one of the components without the need for modifying
the rest of the application. This is especially important
when facing the development of applications which
will have to be ported to different kinds of Symbian
User Interfaces.

Figure 5 shows how the model-view-controller
pattern as usually is implemented in Symbian C++
applications.

Figure 5 - Basic GUI Symbian Application

6. Mobile Communication Architecture

The most common architecture used for
communications in general mobile application
(Symbian or not) is showed in Figure 6.

Base Station

Mobile Client

Firewall

Servers

SMS Gateway

IP Network

Organization’s Network

Figure 6 - Typical Mobile Application Architecture

6.1. Connection Establishment

In the typical client/server model it is the server’s
duty to be running and available at all times and the
client’s duty to initiate connections to the server
whenever needed. This type of interaction is called the
“pull” technology (the client effectively “pulls”
information from the server whenever needed).

If the resources on the mobile device allow it, the
client application can be up and running as well and
the connection can be kept alive all the time. This
typically requires at least so-called small keep-alive
messages to be sent across at regular intervals.

However, there are situations where the client needs
to receive information from the server as soon as it
becomes available but cannot keep the connection
open while waiting. Frequently waking up to poll the
server to check for updates is very inefficient, which is
when the use of the so-called “push” technology comes
in handy. In this case, the client application is either
running idle or not running at all, until the server sends
a message which triggers the operating systems to
wake up the target client application and pass the
message to it. The target application can then take
appropriate actions to handle the message with or
without user interaction.[6]

6.2. Short Message Service

If an application can cope with asynchronous,
infrequent, but reliable data transfer, the Short
Message Service (SMS) might be the way to go. SMS
datagrams are especially useful when the client
application needs to be able to receive notifications or
small amounts of data from the server as soon as the
data becomes available.

The biggest restriction is that each datagram can
only contain a maximum of 140 bytes (8-bits) of
binary data or 160 (7-bits) text characters. The APIs i
support concatenating multiple SMS datagrams, but
still the user has to pay separately for each of them.

There are many ways to enable your server-side
system to send and receive SMS datagrams. For
example, you can subscribe and connect your server to
a mobile service provider’s SMS gateway service or fit
your server-side system with an additional device
capable of receiving and sending SMS datagrams[6].
This first situation is illustrated in Figure 6.

7. Security and Malware

Symbian OS has been subject to a variety of
viruses, the best known of which is Cabir. Usually
these send themselves from phone to phone by
Bluetooth. So far, none have taken advantage of any
flaws in Symbian OS - instead, they have all asked the
user whether they would like to install the software,
with somewhat prominent warnings that it can't be
trusted.

Cell phone virus is a proof-of-concept application
that might describe same as computer viruses that
install itself into the targeted device and executes its
malicious code to “infect” the phone with preset
command.

Currently, Cell phone viruses are spreading using:
Bluetooth, Multimedia Messaging, and faked
applications in warez/Shareware software.

Bluetooth Wireless Technology: it is capable
replicates itself in 10metre Bluetooth wireless range
and search for bluetooth devices that are active in
discovery mode. Upon detected it will pop up as
Screen as shown in Figure 7.

Figure 7 - Bluetooth message reception query

If user clicks yes and he may facing risk that he will be
infected by this suspicious file since he didn’t practice
well in mobile security knowledge and he may proceed
to the installation process.

User should be aware that installing application that
without valid certificate will cause them facing a very
high risk of cell-phone-viruses infection and they
should only install those applications which are

trustworthy. Example of a security warning message is
shown in Figure 8.

Figure 8 - Security warning from unsigned application

Multimedia Messaging Services (MMS): This

year January 2005, a new type of mobile viruses able
to spread itself via Bluetooth but also MMS has been
causing public attention and AV firm pretend this is
the most effective way for mobile viruses to replicate
themselves. Besides, it is able to generates different
codes to send itself via MMS by scanning user
phonebooks contacts that might causing other innocent
users with less expose to mobile security knowledge
get confused and proceed to the installation process
which giving opportunities to cell-phone-malware to
executes itself. Anyway, user should aware of third
party application that doesn’t contain any valid
certificates that might be a virus, as shown in Figure 8.

Faked games, applications and security patches at
Warez/Shareware sites: this is also a way that cell
phone viruses developers used to spread their stuff at
which usually most people like to browse those site to
get “free” stuff and were not aware that actually it has
been packed with mobile trojan/malwares inside them.

However, of course, the average mobile phone user
shouldn't have to worry about such things, furthermore
Symbian OS 9 is adopting a capability model. Installed
software will theoretically be unable to do any damage
(such as costing the user money by sending network
data) without being digitally signed - thus making it
traceable. Developers can apply to have their software
signed via the Symbian Signed program.

8. Symbian OS 9.x

There are two significative changes in Symbian OS
9.x. The first one is the break in binary compatibility.
This means that programs written in C++ for previous
versions of Symbian OS will not run on OS 9 without
making some changes to the source code and
recompiling. So your Series 60 version 3 device
(which will use Symbian OS 9) won’t run current
Series 60 version 2 applications.

The second one is at the security level. Previously,
once an application was installed on your phone, it had
full access to all the API’s in the OS. Now,
applications do not have automatic access to all the
API’s. Those involving critical functions (or which
could run up your mobile bill) will now be restricted.

There are two different types of API (also know as
capabilities): unprotected (60%) and protected (40%).
The protected capabilities can be further divided into
three groups: basic, extended and phone manufacturer
approved. Applications that use either extended or
phone manufacturer approved capabilities must be
Symbian Signed or it will not be possible to install
them on target devices.

Basic protected capabilities are those which may be
broadly understood by the user (such as Bluetooth
connectivity). The phone manufacturer can set these
capabilities as subject to being authorised by the user
(whether a capability is set as user-authorisable is
dictated by the manufacturer's security policy for the
device which can vary between markets and
operators). If a capability is user-authorised then it is
not necessary for an application to be signed. However
if a manufacturer has chosen not to set a capability as
user-authorisable then an application must be Symbian
Signed in order for it to be installed. In practice it is
recommended that most applications using basic
capabilities should be signed.

Applications that use only the unprotected APIs or
use user-authorisable basic capabilities can be installed
although, as with existing Symbian phones if they are
not signed, they will show a security warning on
installation. Applications using the unprotected
capabilities, basic capabilities or extended capabilities
can be signed through the standard Symbian Signed
program. The manufacturer approved capabilities are
the sensitive seven - DRM, NetworkControl,
MultimediaDD, TCB, AllFiles, CommDD and
DiskAdmin and are capabilities which have particular
implications for device data integrity and security. [8]

So a trojan intrusion will only be possible if you
give it permission to do so, and after you’ve also given
permission for an ‘unsigned’ application to be
installed. For applications you do trust that are
unsigned, you can give them permission ahead of time
in the new Applications Manager, and you won’t be
pestered by the permission requests. This is much like
the current security model for Java MIDP on some
Symbian powered phones. Of course all this assumes
that the end-user is sensible enough to say no when
something suspicious happens and permission is asked
for a program.

9. Development Environments

Free Software Development Kits (SDK) are
available for download from the web. They allow the
development of third part applications. Also Integrated
Development Environments (IDE) are available for
free in order to be able to develop Symbian
applications.

9.1. SDK

9.1.1. S60 Platform
Series 60 Platform SDK for Symbian OS, for C++

allows C++ developers to quickly and efficiently run
and test applications for devices that are compatible
with the S60 Platform. The SDK delivers all the tools
required to build C++ for Symbian OS applications.
The tool's package contains the S60 device emulator,
API implementations, documentation, and sample
applications. The S60 Platform device emulator allows
applications to be run and tested without a device.

9.1.2. S80 Platform

Series 80 Platform SDK for Symbian OS enables
C++ application development for devices based on
Series 80 Platform. The SDK is compatible with the
Nokia 9300 and Nokia 9500 Communicator and
includes wide range of tools, APIs, libraries, and
documentation, as well as an emulator. The SDK
includes Application Wizard for generating skeleton
applications for Symbian OS SDKs and phones and the
Nokia Connectivity Framework for communication
with other Nokia SDKs and products supporting Nokia
Connectivity Framework connectivity.

9.1.3. UIQ Platform

The UIQ SDK is a development kit intended for
software developers and organizations developing
applications and services for mobile phones that
incorporate the UIQ platform (Sony Ericsson &
Motorola). The UIQ SDK contains binaries and tools
to facilitate building and deploying applications for
UIQ-based mobile phones. It also contains
comprehensive reference and guidance materials,
examples, and a PC-based emulation of the UIQ
platform to enable fast development turn-around times.
Application development in both C++ and Java is
supported.

9.2. IDE

Visual Studio .NET is a development environment
built from the ground up to enable integration through
XML Web services. By allowing applications to share

data over the Internet, XML Web services enable
developers to assemble applications from new and
existing code, regardless of platform, programming
language, or object model. With Visual Studio .NET
2003 you can now construct applications for a variety
of mobile devices, including Pocket PCs, Tablet PCs,
mobile phones, and more.

CodeWarrior for Symbian OS is designed for
application developers programming for Symbian OS
phones from OEMs including Sony Ericsson,
Motorola, Nokia, Samsung, Siemens and Panasonic. It
contains the same powerful suite of CodeWarrior
application development tools used by many Symbian
OS licensees, delivering everything you need to build
native C++ applications for Symbian OS phones.
Using CodeWarrior Development Studio, Personal
Edition, you can: develop, compile and debug C/C++
applications for Symbian OS smart phones within a
single environment; develop applications for multiple
targets simply by plugging in device-specific Symbian
OS SDKs; streamline development with integrated
Symbian build components; test and debug host and
target applications (both source- and assembly-level)
and shared libraries - even debug multiple executables
simultaneously; navigate and edit code instantly via the
graphical class browser.[12]

The Carbide product provides best-in-class tools for
mobile developers across many development
technologies, including Symbian C++. Carbide.C++
provides a complete set of application development
tools to target the S60 and UIQ SDKs.

Carbide.C++ provides a complete set of application
development tools needed to target the S60 and UIQ
SDKs and to build and deploy applications to devices.
It is anticipated that customers using CodeWarrior for
Symbian OS, will be provided with migration paths to
Carbide.C++.

Carbide.VS is a set of tools that enable efficient
Symbian OS C++ application development using the
Microsoft Visual Studio .NET 2003 IDE and Symbian
OS SDKs. Carbide.VS is targeted at developers with
Visual Studio skills who want to create C++
applications for Symbian OS platforms. Carbide.vs
support development for multiple SDKs and provides
easy entry into Symbian OS C++ development with
wizards and other automated functions that integrate
with Visual Studio. User can get started with minimal
manual configuration. Carbide.VS also contains
functionality to automate several development tasks
specific to Symbian OS. Carbide.VS.[12]

10. References

[1] Symbian URL: www.symbian.com

[2] AppForge – CrossFire. URL: http://www.appforge.com

[3] S60 Platform. URL: http://www.s60.com/

[4] UIQ Technology. URL: http://www.uiq.com

[5] M. Tasker, J. Allin, J. Dixon, J. Forrest, et Al, Symbian
Programming: Mobile solutions on the EPOC platform,
ISBN: 1-861003-03-X, Wrox Press Ltd. 2000

[6] “Enterprise: Developing End-To-End Systems”, Forum
Nokia, 2006. URL: http://sw.nokia.com/id/ebe4cf33-741d-
4a4d-bf14-e28937090aa4/Enterprise_Developing_End-To-
End_Systems_v1_0_en.pdf

[7] Symbian Developer Network. URL:
http://www.symbian.com/Developer/

[8] All About Symbian - Symbian, Series 60 and UIQ
unwrapped. URL: http://www.allaboutsymbian.com/

[9] The Linux Phone Standards Forum. URL:
http://www.lipsforum.org/

[10] QTopia - Linux-based mobile phones. URL:
http://www.trolltech.com/

[11] Java Platform, Micro Edition (J2ME)
http://java.sun.com/j2me/

[12] Carbide. URL: http://www.forum.nokia.com/carbide

