
Programming mobile devices with J2ME

E. Roldán, E. Montón, S. Guillén
ITACA Institute

edrolher@upvnet.es, emonton@upvnet.es, sguillen@upvnet.es

Abstract

Since its beginning, J2ME is a very used language

programming to develop applications for mobile
devices. Its particular architecture is prepared to work
in lots of device kinds, with more or less resources.
However, J2ME have some objections that have to be
had into account.

1. Introduction

Java 2 Micro Edition (J2ME) is a programming
language aimed at the development of applications for
mobile devices, such as mobile phones or PDAs. It is
based on Java language, with a light version of J2SE´s
API in order to execute applications in low resource
devices.

Java is a programming language used in the

development of applications for several machines, with
different resources and capabilities. Due to this, Java
programming is divided in three groups:

• Java 2 Standard Edition (J2SE): For personal

computers.
• Java 2 Enterprise Edition (J2SE): Adds to

J2SE features oriented to the corporative
development.

• Java 2 Micro Edition (J2ME): The most
lightweight distribution of Java, aimed at the
development of applications for very reduced
devices. This distribution is the most portable
of all.

J2ME has an architecture with different layers and

different possibilities by layer, in order to work as
better as possible in most of reduced resources devices.
J2ME´s architecture is composed by a first layer,
named Configuration Layer, where each kind of
configuration is prepared for a kind of devices; a
second layer, Profile Layer, where each profile is
prepared for a family of devices, and finally, a third

layer with the different application programming
interfaces for a determinate device.

As J2ME is very portable, the families of devices

than can use J2ME applications are a lot, such as
mobile phones, PDAs… but also notebooks and PCs
too.

2. Architecture

The J2ME´s architecture is divided in three layers:

• Configuration Layer
• Profile Layer
• Application Layer

Figure 1. J2ME Architecture

2.1. Configuration layer

The first layer encountered upper the Operating

System is the Configuration Layer. There is the Java
Virtual Machine (JVM) and the basic set of libraries to
make programs. In J2ME, we have the below
configurations.

2.1.1. CLDC 1.0

Connected Limited Device Configuration. Used in
very limited resources devices (128-512KB of
memory). It works with the KVM (Kilobyte Virtual
Machine) and it is not compatible with J2SE. Due to
the limited resources included in this configuration, it
doesn’t allow the use of basic characteristics, as neither
the float or double types nor the JNI interface. The
classes that this layer provides are:

• java.lang.*
• java.io.*
• java.util.*
• java.microedition.io.*

2.1.2. CLDC 1.1

 It is the new version of the CLDC configuration. It
includes new features as floating point type and weak
references.

2.1.3. CDC

Connected Device Configuration. Used in devices
with more resources than in the case of CLDC (2MB
of memory). It works with the CVM (Compact Virtual
Machine) and is compatible with J2SE. In fact, this
configuration uses a reduced set of the JDK 1.3
libraries. Some implementations of this configuration
allow the use of the JNI. The classes that this
configuration provides are:

• Java.io.*
• Java.lang.*
• Java.math.*
• Java.net.*
• Java.security.*
• Java.text.*
• Java.util.*
• Java.microedition.io.*

2.2. Profile layer

The next layer of the architecture is the Profile
layer. This layer gathers a set of libraries oriented to a
determined application field. It determines the
application’s life cycle, application’s user interface…

There is available a lot of profiles, but the most

important profiles are two: the MIDP (used usually on
mobile phones) and the Personal Profile (used usually
on PDAs).

2.2.1 MIDP

Mobile Information Device Profile. This profile

works with the CLDC configuration. It is oriented to
devices with the next characteristics:

• Low computational and memory capacities.
• Low connectivity (9600bps).
• Low graphic capacity.
• Data input alphanumeric very reduced.
• 128KB of memory for MIDP components.
• 8KB of memory for persistent application

data storage.
• 32KB of memory for the Java stack in

runtime.

This profile provides the next classes:

• javax.microedition.lcdui.*
• javax.microedition.rms.*
• javax.microedition.midlet.*
• javax.microedition.io.*
• java.io.*
• java.lang.*
• java.util.*

The version 1.0 of this profile gives two APIs in

order to create a user interface: the high level API and
the low level API.

The high level API allows the creation of forms and

to put several components on it, in the same way than
the AWT libraries in J2SE. The components available
are: Choice groups, gauges, tickers, date fields, text
fields, image items, text items and string items. Instead
of forms, other predefined screens, as a list, a textbox
and an alert screen can be used.

The low level API provides the control all the

potentiality of the screen, accessing to each pixel
individually. In this case, the Canvas class allows the
access to the screen and it is available a Graphics
object to draw on that. In addition, the API allows a
total screen control, allowing a total keyboard control,

returning the keycode of the key pressed, for all the
keys presents in the device. Using this API, it is
possible to create new components for the high level
API. The disadvantages of this profile basically that
making user interfaces with it is more complicated that
using the high level API. Furthermore, the user
interfaces made with this API are more dependents of
the device that the high level API, because not all the
devices have the same screen size or the same buttons.

Apart of the user interface, the profile gives classes

in order to make network connections, using the
connections systems that the device has, like GPRS or
Wi-Fi. In the version 1.0 of the MID Profile, only the
HTTP 1.1 protocol is implemented, whereas in the
MIDP 2.0 are implemented the sockets, datagrams and
HTTPS protocols as well as the CommConnection, an
interface to access to serial ports, and the
StreamConnectionNotifier, that allows the
configuration of the mobile device as a server to
receive incoming connections. The problem of this
configuration in this type of devices is that usually the
IP address assigned to the device normally is not fixed.

In order to store data in persistent mode, the MIDP

provides the RMS system, that is, the Record
Management System that allows the storage of data in
an index table. Each midlet (MIDP application) can
create its own RMS zone, and only the midlets that are
in the same suite can share a RMS zone. The RMS data
is stored in binary files into restricted area of the
device’s memory map. The RMS operations are
atomics, synchronized and serialized.

At this moment, there are two MIDP versions, the

MIDP 1.0 and the MIDP 2.0. The 1.0 version has the
features described before, and the 2.0 version includes
the next new features:

• Secure networking
• Multimedia
• Form enhancements
• Game API
• RGB images
• Code Signing and Permissions
• Push Registry

The MIDP applications have a special life circle.

The application has three states: Active, Paused and
Destroyed. When the application starts, the startApp()
method is called. When an incoming call arrives, the
application goes to the Paused state, calling to the
pauseApp() method in order to close open connections
or open files. When the call finish, then startApp() is
called again and the application goes to the Active

state. Finally, when the application is going to be
closed, the destroyApp() method is called and the
application goes to Destroyed state.

Figure 2. MIDP Applications Life Circle

2.2.2 Personal Profile

This profile works with CDC configuration, and is
oriented to devices that require full GUI or Internet
applet support, such as PDAs. The user interface is
based on the AWT libraries, and the Personal Profile is
based on a subset of JDK 1.3, being compatible with
J2SE applications.

In most of cases, this profile support JNI (Java
Native interface), and then it is possible the installation
of own APIs, even if that API need to access to
hardware resources. This profile allows the
development of applications, applets and Xlets.

2.3. Top layer

The last layer of the J2ME architecture is the

application layer. This layer contains your application
and all the application program interfaces (APIs) that
you can use in your application. The most used APIs
are:

• JSR-82: Bluetooth API.

This API allows application developers the use of
the Bluetooth interface of the device. With this API it
is possible to search devices and services, as well as
the exchange of information with others devices.
However, some implementations of this API don’t
implement the OBEX protocols, being necessary to
implement them in order to be able to communication
by means of this system.

• JSR-120: Wireless Messaging API

This API allows application developer to send and
receive SMSs. Is very used in mobile phones

• JSR-205: Wireless Messaging API 2.0

The new version of the JSR-120 API. It provides

delivery and reception of MMS, in addition to SMS
messages.

• JSR-135: Multi-Media API

The most used API in mobile phones. This API

allows you application to manage the multimedia
resources of the mobilde device, like the speaker, the
microphone and the camera. It is necessary to highlight
that some implementations doesn’t includes the access
to the camera, or includes the access but only to take
snapshots, but not video. In addition, the quality of the
images captures is in general very low

• JSR-172: Web Services API

This API allows application developer to use web

services from a server. Actually, this API is only a
SOAP implementation, because if it is not possible to
access to the network, it is not possible access to web
services, That is, this API doesn’t control any hardware
resource, only implements a protocol.

• JSR-72: File Connection and PIM API

This API allows application developer to access to

physical files in your device, both for reading and for
writing. This API provides access to determinate
resources like the device’s contact agenda.

Others existing APIs are: RMI, USB, Speech,

Location, SIP, Mobile 3D Graphics, Data Sync,
Encryption, XML parsers...

This layer contains the libraries to be used by the

application. For example, libraries make by the same
developer or by others in order to encrypt, to
implement a protocol, to compress... Some available
libraries are the kSOAP libraries, which allow
application developer to access to web services or the
Derby database, which is a 100% Java database
implementation fully compatible with J2ME Personal
Profile.

3. Development Environments

In order to create a J2ME application it is necessary
an editor to edit the source code, a preverifier to
preverify the classes, a compiler to compile the java
source and a simulator to simulate our applications.
These tools can be obtained individually or in a
integrated environment.

Below, two example environments to create MIDP
applications are described:

3.1. J2ME Wireless Toolkit

This free tool provides the compiler, the preverifier

and the simulator. It is only necessary an editor to edit
the source code and allows the creation of MIDlets.

3.2. Sun One Java Studio

This tool is an Integrated Development

Environment (IDE) that provides all the necessary to
create MIDlets. Nowadays, this utility is integrated
with the NetBeans IDE in the plug-in named Mobility
Pack.

In the case of Personal Profile applications we there

are following environments:

3.3. WebSphere Studio Device Development

Created by IBM based on Eclipse, this environment
allow developers to create application, applets and
Xlets in order to be run in a device with the J9 Virtual
Machine, the JVM created by IBM for some devices
like Pocket PCs.

3.4. J2SE Development Kit

It is possible to develop an application for J2SE but

only using the J2ME Personal Profile classes subset.
Therefore, that application could be run in a J2ME
Personal Profile environment without problems.

4. Devices

The principal advantage of J2ME is its portability. it
is possible to run J2ME applications in any device
where you can put a JVM. Then, J2ME application can
operate in lots of devices like the followings:

4.1. Mobile phones

Some manufacturers that include a JVM in some of
their mobile phones are Nokia, Alcatel, LG, Samsung,
Sanyo, Siemens, Sony Ericsson...

4.2. PDAs

Both Pocket PCs and PALMs, but the flexibility is

higher in the case of Pocket PCs than in PALMs.

4.3. PCs

J2ME is designed to run in reduced resources

devices, but applications can run in desktop or
notebook computers perfectly.

5. Practical cases

5.1. DERMA

This application, carried out in the TSB group,
allows the user to capture photographs and fill forms in
order to send that information to a server using the
GPRS network.

The application was made using the MultiMedia
API and MIDP 2.0 in a Nokia 6630 mobile phone.

The principal problem was the low snapshot quality

of the MMAPI, because this API only allows
applications to capture photographs with the size of the
phone screen, and in the option given to use bigger
photographs, the API captures the photograph with the
screen size and then resize it digitally. Then, the
quality of the photograph is very low.

5.2. LyraPDA

This application, done in the TSB group too, allows

the user to have information about several patients,
with personal information and vital signal measures.

The application has a database integrated, uses web

services to communicate with the server, and an
encryption system to store and to send the data. In

addition, it can control the monitoring device using a
Bluetooth link that allows the measurement of the
patient’s pulse, oxygen saturation, blood pressure and
ECG.

In order to do this, the application was carried out
over a Pocket PC PDA (QTEK 9100) using the IBM J9
Virtual Machine with the Personal Profile. To control
the Bluetooth resources, it was needed to include an
external Bluetooth API (that was possible because J9
Personal Profile allows the JNI), and the use of the
database was possible because the inclusion of a a
JDBC package driver.

In the communication, the use of a library with an
implementation of the SOAP protocol and other with
the HTTPS protocol was necessary, in order to access
web services using an encrypted connection.

The problem encountered was the memory
management, because the application fills the memory
faster than the garbage collector can free it, and if the
garbage collector is called manually, it is not able to
free all the memory used by unreferenced objects.

6. Conclusions

 In conclusion, we can define J2ME like a language
programming that is an alternative to develop
applications for reduced resources devices, with the
advantages that is easy to learn and fast to develop
applications, with lots of APIs designed to help us in
the most common tasks. However, this language has
some disadvantages that need to be had into account.
The access to the hardware resources is restricted to the
APIs that the programmer can use. The memory
management is done by the JVM and sometimes it is
not as good as would be. Some APIs are not 100%
implemented, like the MultiMedia API. And finally, if
we cannot access to the JNI, we are restricted to the
Java sandbox. If these constraints are not restrictive to
implement one particular application, J2ME is the best
option and the easiest way to develop that application.

7. References

[1] S. Gálvez, L. Ortega, “Java a Tope”,
Electronic Edition.

[2] J. de M. Hernández, “Introducción a J2ME”
www.todosymbian.com

[3] “Introduction to mobile Java technology”
http://developers.sun.com/techtopics/mobility/getstart/

[4] J. Knudsen, “What is new in MIDP 2.0”,

http://developers.sun.com/techtopics/mobility/midp/articles/
midp20/

[5] A. Froufe, P. Jorge, “J2ME: Manual de Usuario y
Tutorial”,
 Ed. Ra-Ma.

[6] “Datasheet Java 2 MicroEdition”
http://java.sun.com/j2me/j2me-ds.pdf

