
MONO, a free software alternative to .NET

Alberto Moreno Jiménez, Elena Villalba Mora, M.T. Arredondo
Life Supporting Technologies

ETSI Telecomunicación
Universidad Politécnica de Madrid

amoreno@lst.tfo.upm.es

Abstract
In the year 2002 Microsoft released the version 1.0

of the .NET Framework] as a new tool for developing
professional software applications. The aim of this
environment was to fill the need for interoperable
systems through platforms and programming
languages, where other alternatives like Java and
CORBA did not succeed. The Java solution lacks
feasible interoperability with non-Java systems, and
CORBA is complex to deploy. The .NET platform
offers an interoperable solution based on standards
like XML, HTTP and Web Services and it works
though a wide variety of languages and platforms.
These characteristics have motivated the creation of
MONO, a free software implementation of the .NET
Framework.

This paper presents the MONO framework,
remarking its achievements and its faults during the
development of an interoperable set of libraries for a
Heart Failure Management System.

1. Introduction

e-Health applications manage important and personal
information about people and diseases. This kind of
information requires important security conditions and
restrictions, since data confidentiality have to be
guaranteed. Also, these systems are commonly
oriented towards people with no technical background,
who expect a correct behavior from the system, even in
complex low level error situations. These people
require a high level of reliability; otherwise they will
not use the system whatsoever. Application
programmers cannot deal with all this complexity and
high level of expectation. In order to develop usable e-
Health systems, it is necessary a mature framework to
build on, which can assure the proper level of security
and reliability. Moreover, these systems often need to
be executed on different operating systems and
different hardware, so portability is also an important
issue to take into account.

In order to resolve this kind of problems, common to
many software developers, Microsoft proposes the
.NET Framework [1], a general purpose application
development environment. The framework consists of
a wide platform that includes several possible
programming languages, tools for agile product
development and different information servers. It also
defines the new C# programming language, as
reference for the .NET Framework. According to the
last Open Source and standardization initiatives in the
software community, both the Framework and the C#
language are part of ECMA standards. Therefore, third
parties can implement versions of these products
maintaining compatibility. Also, free software groups
have been sponsored by Microsoft to build general
purpose .NET libraries.
.NET Framework relies on three main components to
provide its features [4]: the Common Language
Runtime (CLR), a base class library and a strong
security structure. The CLR is the .NET virtual
machine that runs the applications code. The different
.NET programming languages, compile to platform
independent bytecodes. These bytecodes define a low
level virtual code known as MSIL (Microsoft
Intermediate Language). The first time the CRL runs a
.NET code in a system the JIT (Just In Time Compiler)
performs the compilation to the specific platform
machine code, thus providing the appropriate
performance.
The following figure sketches the layers of .NET
Framework.

Figure 1: the .NET Framework

The base class library (BCL) provides tools to
facilitate and strengthen software development. It
includes utilities to build visual event-based Windows
formularies. The BCL also incorporates connectivity
mechanisms for databases and Web technologies.
.NET focuses on new techniques, such as XML and
Web Services [8], to intercommunicate distributed
systems on a network. The assemblies that constitute
the BCL are part of the ECMA standard and are
available in all compliant .NET implementations.
However, optional libraries provided from Microsoft
are not part of the standard and remain subject to
software patents. Examples of these optional libraries
include the Windows Forms namespaces and abstract
database access, among other important utilities.
Security is a critical requirement, especially in
distributed network applications. .NET Framework
provides code access security that grants permissions
depending on the code origin. This way, .NET
applications coming from the desktop, the local
network or the Internet, will run on a system with
different security restrictions. Also .NET provides
code validation and verification, in order to guarantee
the internal consistency of an assembly. Before
running any code, the Common Language Routine
(CLR) checks that the assembly only contains valid
metadata and that code does not perform unsafe
operations. This security approach protects users
against potential attacks to their systems. It focuses on
the most common security holes found in Internet
applications.
MONO [3] is an Open Source implementation of the
.NET Framework. MONO started in December of the
year 2000 with the creation of a C# compiler by
Miguel de Icaza. On July 10th, 2001, Novell
announces at an O’Reilly conference the creation of
the MONO project. Three years later, on June 30, 2004
MONO 1.0 was released.

2. Methodology
The MONO project is divided in three main research
lines:

• The Core group implements the framework
common products. This includes the MONO
virtual machine, the C# compiler and the Base
Class Libraries. All of these components are
based on the Ecma-334 and Ecma-335
standards, allowing Mono to provide
standards compliant, free and open source
virtual machine.

• The MONO/Linux/GNOME development
stack focuses on applications under GNOME,
a common windows manager used in the

Open Source Community. The main
developments include Gtk# for GUI
development, integration libraries for Unix
and Mozilla and a XML schema language
called RelaxNG. Gtk# allows MONO
applications to integrate with GNOME
desktops with the same facility as native
applications [5]. This group also develops
database connectivity drivers for most
common servers, such as MySQL, SQLite,
PostgreSQL, Firebird, Open Database
Connectivity (ODBC), Microsoft SQL Server
and Oracle, among many others.

• The Microsoft compatibility stack works on
porting MS applications to MONO. The main
objectives are the porting of Windows Forms,
Web Forms and ADO .NET but, since these
components are not covered by ECMA
standards, they remain subject to patent issues
[6].

MONO environment provides several tools to develop
applications. The MONODevelop is a programming
environment for Gnome and Windows that allows
programmers to build visual MONO applications.
Other general purpose tools and applications have been
built for MONO. Some examples are Monoppix: a
Live Linux Distribution that runs MONO applications
or some Open Source Libraries such as nHibernate,
used for abstract database access, and log4net for
debugging purposes.

Figure 2: application development under

Monodevelop

MONO has been tested in MyHeart[7] project aiming
at creating shared libraries between two products. The

first product was a tool for people who need to look
after their health. The concept consisted of providing a
Linux based embedded device running a MONO
application that controls certain life habits. The second
product was design for old people with heart failure
diseases. The product was provided running on a
Windows PocketPC PDA with Compact Framework
[8]. Since products shared certain similarities, as well
as physical measurement devices, there was an interest
to share libraries between them. To test this possibility
the following steps were followed:

1. Study of the state of the art in Open Source
Software .NET drivers for different
technologies, such as Bluetooth connectivity,
pocket database access, Web Service coupling
and user formularies implementation.

2. A small application was created in Visual
Studio. This application consisted of a user
interface with some labels and buttons, which
retrieved the information from a local file and
sent it to a Web Service for processing. Also,
an extended version of this application was
created, with access to a pocket SQLite
database.

3. These applications were compiled using
Microsoft .NET framework for Desktop and
Compact Framework environments.

3. Results
The results of the state of the art in MONO
technologies are summarized in the table 1. This
corresponds to the latest version of the product,
MONO 1.1.10. According to Novell, the major feature
missing before Mono 1.2 is the completion of a
Windows Forms implementation.

Windows Forms The Windows Forms assemblies

provide the means to build visual
applications in .NET. The major
problem found in the MONO
development group, was that the
implementation was based on the
Microsoft Windows application
interface (API). The differences
between the Windows API and
other interfaces like GNOME or
KDE is an obstacle for the
implementation of this
functionality.
Windows Forms applications
running under MONO lack some
of the most complex components

like grid tables among others.
According to the MONO official
schedule, the .NET version 1.1 of
Windows Forms will be
available by MONO 1.2.

.NET 2.0
Support

Support for .NET 2.0 ECMA
standards is considered complete.
Non-standard assemblies will
still need more time to be fully
developed by the MONO team.

Code Access
Security

MONO provides code security,
depending on the source origin.
Nevertheless, still there is no
code verifying, so changes to the
MSIL metadata are not detected.

Visual Basic Visual Basic support is in beta
version.

ASP .NET Support for ASP .NET 2.0 is
available in MONO 1.1.10. A
module for the Web Server
Apache is provided to run ASP
scripts.

C# Compiler A complete C# compiler is
provided since the first versions
of MONO.

GTK# GTK# is a set of .NET libraries
to program visual forms user
applications in MONO. These
are provided as an alternative to
the Windows Forms namespace.
Since it is based on a working
toolkit, the status is more
advanced and mature than the
Windows Forms compatibility.

Table 1: MONO Status

As far as now, MONO has a partial implementation of
the .NET platform, which can compile and run .NET
applications. It can run over several software platforms
like Linux, Mac OS, BSD, Solaris and, of course,
Microsoft Windows. There are particular MONO
versions for most common hardware platforms, such as
x86, IA64, ARM and PowerPC, and there are groups
working for other platforms.
As an independent framework, MONO provides a
complete environment for applications development.
Available assemblies provide database access, Web
Services, and GUI formularies through GTK# and
partial Windows Forms. Since MONO runs on
different platforms, it provides a real interoperable
development framework. Although not all necessary
requirements are implemented yet, the system is stable
and can be used in non critical applications. The main

drawback in MONO environment is the fair Microsoft
implementation compatibility. Although simple
applications can run straight forward from the
Windows Implementation to MONO, most
complicated systems with database access and complex
visual formularies are not supported yet.
The tests done in MyHeart project tried to measure the
compatibility level between the Windows .NET
Desktop Framework, and MONO. The state of the art
showed that assemblies for database management and
Bluetooth connectivity were different from one
framework to the other. The Web Service application
created in Visual Studio ran over MONO as expected,
getting the file from the local file system, and sending
it to a remote server. However, the extended version
with light database support could not run directly.
The compatibility problems grow when the
environment is mobile and the applications run on
Microsoft Compact Framework. Microsoft creates
Compact Framework as a .NET subset, and provides
different reduced assemblies to build applications.
However, these applications can still run on the .NET
desktop framework, because these reduced assemblies
export a retargetable flag, which allows it to run on the
full desktop platform. As far as now, MONO does not
provide any Compact Framework support. Moreover,
since most Linux based embedded devices run a full
Linux distribution, there is no need for a reduced
version at the moment. The problem arises when
MONO cannot support retargetable assemblies at all
and, according to the last news from Novell, this is not
bound to change in the near future. For this reason,
Compact Framework applications will not run on
MONO for now unless compiled versions of the
assemblies are provided.

4. Conclusions
The number of systems that use the .NET Framework
is growing day by day, and MONO aims at creating a
software platform that can let the Free Software take
advantage of it. This is the reason why there are many
enterprises that look forward MONO, and support it
financially.
As far as now, MONO provides a stable framework for
software development based on the Microsoft .NET
ECMA standards. Even though MONO supplies a
consistent framework to build applications, certain
compatibility issues still isolate one environment with
the other.
The maturity level of MONO platform does not reach
the Microsoft implementation. However, the interest
around MONO is growing among the Free Software
community and it is achieving a lot of support.

Eventually, MONO will bring up the necessary
functionalities to provide a real alternative to Microsoft
.NET Framework.

5. Acknowledgment
The MONO Framework has been studied within the
MyHeart project, “Fighting Cardiovascular Diseases
by prevention and early diagnosis” (IST-2002-
507816). MyHeart is a 6th Framework Project of the
IST Programme, partly funded by the European
Commission.

6. Bibliography

[1] Thuan Thai, Hoang Q. Lam, ".NET Framework
Essentials". Publisher: O'Reilly. ISBN:
0596005059.

[2] George M. Doss. "Corba Networking with Java".
Publisher: Wordware Publishing Inc.,U.S. ISBN:
1556226543.

[3] Dumbill, Ed. "MONO: A developer's notebook".
Publisher: O'Reilly. ISBN: 0596007922

[4] Matt Reynolds, Karli Watson. ".NET Enterprise
Development in C#: From Design to Deployment".
Publisher: Wrox Press Ltd. ISBN: 1861005911.

[5] Pennington, H. "GTK+/GNOME Development".
Publisher: O'Reilly. ISBN: 0735700788

[6] MyHeart Description of Work, February 2006.
IST-2002-507816 MYHEART IP

[7] Peter Stanski, Craig Morris, Srinivasa Sivakumar,
Andrew Polshaw, ".NET Compact Framework".
Publisher: Wrox Press Ltd. ISBN: 1861007000

[8] Web Services Essentials. By Ethan Cerami.
Publisher: O'Reilly. Pub Date: February 2002.
ISBN: 0-596-00224-6.

Address for correspondence

Alberto Moreno Jiménez
Life Supporting Technologies
ETSI Telecomunicación. D-204
Ciudad Universitaria s/n.
Madrid 28040.
e-mail: amoreno@lst.tfo.upm.es
Tel. +34913366834 ext 3407 / Fax: +34913366828

