INFORMATION SOCIETY TECHNOLOGIES PROGRAMME (IST) DIAFOOT IST-2001-33281

Best Practice Action

REMOTE MONITORING OF DIABETIC FOOT

SUMMARY:

- Project partners
- Diabetic foot Plantar pressure
- State of the art
- DIAFOOT system
- Data transmission
- Clinical evaluation protocols
- Orthopaedic insole materials
- Dissemination activities
- Calendar of activities
- Deliverables
- Conclusions

Partners

Proyección Europlan XXI, S.L.

Universidad Miguel Hernández

Aziende Osppedalaria Pisana

INESCOP INSTITUTO TECNOLÓGICO DEL CALZADO Y CONEXAS

Red XXI, S.L.

C.G.S di Coluccia & C. Sas

Clínica Virgen del Consuelo

U.P.D Unidad Pie Diabético

Diabetic foot

- In 2000: 150 millions diabetics
- Lack of sensitiveness in foot: neuropathy
- 15% of diabetics: problems with diabetic foot
- High risk of amputation
- ✓ High sanitary costs (10 millions of European diabetics represent 29 000 millions €)

Measurement of plantar pressure

- Give functional information from foot-ankle when walking or making physical activities.
- Indicator of
 - Muscle-skeleton changes.
 - Neurological changes
- Pressure Data for:
 - -Checking patient
 - -Treatment implementation.
 - -Education
 - -Investigation: Pressure-plantar morphology

Utilities

- Evaluate the effect of plantar orthesis
- Evaluate footwear modifications
- Analyse different materials or therapeutic footwear
- Evaluate cost-effectiveness of a treatment

State of the art

Diagnosis systems

- Platform issues

 EMED SF
 MUSGRAVE
 Footscan plate

 In Shoe issues

 Footscan Insole
 Footscan Insole
 EMED Pedar
 - Biofoot

Monitoring systems

DIAFOOT

State of the art

- Platform issues
 - Advantages: wireless, not sensitive to temperature.
 - *Disadvantages:*big dimensions, patient walks barefoot, path lenght limited, targeting.
- In Shoe issues

 Advantages: inside the shoe, design of insoles and orthesis, real time data acquisition, no path limit.

Disadvantages: not wireless, very sensitive to temperature and humidity inside the shoe, targeting.

Commercial and DIAFOOT sensors

- DIAFOOT sensors: previous stabilization, durable.
- Other sensors: not stable, short lifetime.

Output vs days of use

DIAFOOT system

- Advantages
 - ✓ Wireless
 - ✓ Monitoring
 - ✓ No targeting
 - ✓ Massive service
 - Pressure data of everyday walking
- Components
 - Sensor insole
 - ✓ Data Logger 1
 - ✓ Data Logger 2
 - ✓ Base Unit (modem or cellular)
 - ✓ Central Unit

State of the art

Diagnosis systems

Monitoring systems

DIAFOOT

State of the art

Diagnosis systems

Monitoring systems

DIAFOOT

SENSORS INSOLE

- 64 sensors/insole
- Max-detection threshold: 3 kg/cm²
- Resolution:1/50 or better (minimum division: 200 g)
- Diameter of 6mm
- Hermetic and perfectly guarded from humidity

Sensors calibration

- Absolute pressure \checkmark
- ✓ Pneumatic chamber
- ✓ Linearization matrix (255x64)
- ✓ Each sensor calibrated individually

Linearity

- Different days of use
- Different pressures (2; 1.5; 1;0.5; 0.3 bar)

Components of DL 1

Analogical-8-channel-multiplexor

- 8 analogical signals \rightarrow 8x8 multiplexor \rightarrow 64 signals
- 20 tie lines: 16 for pressure, 4 for temperature
- CMOS low resistance, SMD format

B. Connector

- sensors-DL 1 connection
- Good electric contact
- High reliability
- Metal sheet + elastic band

Components of DL 1

C. Microcontroller

- FLASH memory, Sequence programming
- Analogical/Digital converter included
- SMD format, Eeprom memory

D. Transmitters

- 433,92 MHz band (free emission)
- SAW (Superficial Acoustic Wave) resonators and a transistor
- 1200 baud
- PDM modulation type

E. Power supply

- Lithium battery 3V, 100mAh: 1 transmission some weeks

F. Protection Box

G. Programming connection and RS232 connection.

DATA LOGGER 2

- Temporary storage unit
- RS232 connection (speed 19600 Baud).
- ✓ Size:130x60x30mm.
- ✓ Capacity: 4 Mb
- ✓ Minimum range: 1 week
- ✓ Tx: 432.92 Mhz transmitter, 50 mW/min
- Rx: 432.92 Mhz receptor, sensitiveness: 2uV/min
- ✓ Signal configuration (64+17 bytes)

FF FF ID (high) ID (Low) FN 1^a 2^a 3^a 4^a 5^a 6^a 7^a 8^a Values Year-Month

Day Hour Minute Second C.S

DIAFOOT system assembling

8

✓ Individually connection of sensors
 ✓ Personalized distribution of sensors
 ✓ Individual sensors

Clinical evaluation protocols

- Status
 - ✓ Selected patients (30 Spain+30 Italy)
 - ✓ Evaluation at laboratory (new specifications from medical team)
- Patient selection criteria
 - General criteria: Age, sex, weight, height, time suffering the illness
 - Inclusion criteria: insulin-dependence, ulcers for no more than 4 weeks and no infection, neuropathy
 - Exclusion criteria: deep or multiple ulcers, amputations, serious feet deformity, gait pains

Pre-clinical protocols

- Comparison: 10 control subjects-10 non neuropathic diabetic patients
 - Bipedestrian standing
 - · Walking at normal speed
 - Walking at fixed speed
- ✓ Repeatability: evaluation 3 times
- Effectiveness in detecting hyper-pressures
- Reliability of remote-recording and transmission

All

Clinical protocols

- Normal volunteers
- Diabetic with high risk of foot ulcers
- Diabetic with low risk of foot ulcers
 - -Total activity (n° of steps/24 h)
 - -Mean pressure in 24 h
 - -Mean area in 24 h
 - -The same parameters/time actually spent of foot. (TASF)
 - -Pressure/area/24 h
 - -Pressure/area/TASF
 - -Pattern of activity

Orthopaedic Insoles Materials

- Materials' status
 - Great variety
 - Little technological information
 - Lack of objective criteria on uses
 - Low durability
 - High costs
- ✓ Objectives
 - Establish criteria of materials selection for orthopaedic insoles
 - Develop or adapt new materials in order to obtain:
 - High durability
 - Low costs

Characterization of materials

- Materials tested
 - → Polyurethane (PUR)
 - → Ethylene vinyl acetate (EVA)
 - → Polyethylene (PE)
 - → Polyvinyl chlorate (PVC)
 - → Rubber
 - → Polyester Resin

Characterization of materials

- Tests
 - → Bulk density
 - → Hardness
 - → Stiffness
 - Remanent deformation
 - → Resilience
 - → Compression fatigue
 - → Sweat resistance
 - → Steam permeability
 - → Steam absorption
 - → Martindale abrasion

Dissemination activities

- Project-presentation CD-video and brochures
- Articles in journals (leather, footwear, medicine)
- Publications in national and regional press
- Local TV reports (VHS format)

- 25 January 2002: "First National Meeting of Specialised Care Units in Diabetic Foot"
- ✓ 19-21 April 2002: "II Course of Diabetic Foot"
- ✓ 20 July 2002: Seminar DIAFOOT in University Miguel Hernández
- ✓ 2 October 2002: Seminar DIAFOOT in Aziende Ospedalaria Pisana

Calendar of activities

WP1: STUDY PHASE 100%

- A: Bibliographic study about diabetic foot and treatment protocols
- **B:** Analysis of the information transmission procedure from patients to Hospital
- C: Training needs analysis, by direct interviews to medical team and patients
- **D:** Evaluation and harmonisation of protocols for diabetic feet treatment between participating Hospitals
- E: State of the art of sensors and other possible variables to be measured
- **F:** Initial cost-benefit analysis

WP2: TECHNOLOGY IMPLEMETATION

- **100% G:** To identify potential obstacles to the use of proposed sensor and communications systems in relation to internal procedures, external procedures and patients requirements
- **100% H:** Definition of reference parameters for clinical trials
- **80%** I: Technology implementation and integration Hospitals-patients

WP3: PATIENT TRIALS

- **90%** J: selection of 60 patients between Spain and Italy
- **40% K**:clinical tests (30 tests/Hospital) showing the advantages of the technology implemented (dynamic Hospital-patient communication mechanism through electronic data exchange and remote monitoring)

WP4: ASSESSMENT PHASE

- **0%** L: Evaluation of results/benefits
- **0% M:** preparation of an exploitation plan for each participant of the project

WP5: DISSEMINATION ACTIVITIES AND EXPLOITATION PLAN

100%

0%

75%

- N: Definition of a communication and diffusion plan (addressees, "message" and strategy)
 - **O:** Execution of diffusion activities (leaflets, seminars, fairs, publication of articles in magazines, press and internet, videos, workshops, etc)
 - **P:** Analysis of the possibilities of implementing the results in other health areas
- **0% Q:** Analysis of mechanisms of knowledge transfer inside the consortium
- **50% R**: Elaboration and execution of an exploitation plan
- **0% S:** Complete definition of business plan

T: carry out the activities of market prospective and commercialisation of the new products

WP6: TRAINING AND SUPPORT TO COMMERCIALIZATION ACTIVITIES

- **80%** U: Elaboration of training material for medical team (management and technical aspects) and patients
- 80% V: Development of training courses

WP7: PROJECT MANAGEMENT

- **100% W:** Establishment of management, co-ordination and organisation elements of the project
- **75%** X: Definition of mechanisms for conflict resolution
- **75% Y:** Project control: short term (each 6 months) and medium term (each 12 months), with the edition of the corresponding progress report
- **75%** Z: Quality assurance plan during the development of the project

MIL

Deliverables

- D1.1: Integration requirements (28/02/02)
- D1.2: Benchmarking of sensor systems (May 02)
- D1.3:Preliminary analysis of medical and sensor issues (24/02/02)
- D6.1:Training materials (24/02/02)
- D2.1:Demonstration of technology implemented at lab.level (20/07/02)
- D2.2:Dissemination and use plan (02/09/02)
- D3.1:Patient trials. Patient compliance and user acceptance (02/09/02)

D1.1:Integration requirements

Study report consisting of overall design of the system:

- Developed system features
- Possible architecture of the system
- Analysis of already existing products in market
- Detailed description of integration elements of built system

D1.2:Benchmarking of sensors systems

- Study report consisting of the state of the art of pressure sensor technology
 - Fundamentals of pressure sensor technology
 - Pressure sensitive inks
 - Results of laboratory trial (INESCOP) with pressure sensitive ink

D1.3: Preliminary analysis of medical and sensor issues

Survey of available medical issues for pressure measurement

- Survey of commercial forms in pressure measurement issues
- Commercial available platform issues
- Commercial available in-shoe issues
- ✓ DIAFOOT issue under building

D6.1: Training materials

Focused on the skills requires in medical team and patients in order to proper deal with the system

- Relevance of pressure measurement
- Features of technology involved
- ✓ User general advice
- Advantages in treatment protocol when new system implementation

D2.1: Demonstration of technologies implemented and integrated at laboratory level

 Public demonstration: DIAFOOT seminar in Elche (Alicante-Spain)

D2.2: Dissemination and use plan

 Definition of elements for the dissemination and exploitation of the technology system.

D3.1: Patient trials.Patient compliance and user acceptance

 Trials under development: deliverable reviewed after prolongate use of the system by patients

INFORMATION SOCIETY TECHNOLOGIES PROGRAMME (IST) DIAFOOT IST-2001-33281

Best Practice Action

REMOTE MONITORING OF DIABETIC FOOT

